

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # How to Contribute

We’d love to accept your patches and contributions to this project. There are
just a few small guidelines you need to follow.

Contributor License Agreement

Contributions to this project must be accompanied by a Contributor License
Agreement. You (or your employer) retain the copyright to your contribution;
this simply gives us permission to use and redistribute your contributions as
part of the project. Head over to <https://cla.developers.google.com/> to see
your current agreements on file or to sign a new one.

You generally only need to submit a CLA once, so if you’ve already submitted one
(even if it was for a different project), you probably don’t need to do it
again.

Code reviews

All submissions, including submissions by project members, require review. We
use GitHub pull requests for this purpose. Consult
[GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
information on using pull requests.

Community Guidelines

This project follows
[Google’s Open Source Community Guidelines](https://opensource.google.com/conduct/).

Android Views and Widgets Samples Repository

This repository contains a set of individual Android Studio projects to help you get
started writing/understanding Android views and widgets features.

 #Interpolator Playground

This application shows how the various Interpolator implementations in the platform work.
You can vary the duration of the animation as well as the constructor parameters of any
of the variable interpolators and use the values in the UI to inform how to write
your code that uses that interpolator. Changes to the animation parameters will
be reflected dynamically in the blue curve and running the animation will
show the animation in action (with the red circles on the curve as well as
in the open area at the bottom).

To use:
* Select any of the built-in interpolators from the drop-down list at the top
* Use the slider(s) to change the animation duration and/or any of the variable
parameters for the selected interpolator
* For Quadratic and Cubic Path interpolators, drag the green handle(s) to position
the control points of the curve
* Click the ‘Run’ button to see the animation in action
* Note the values of the duration and other parameters to use in your
animation code

![InterolatorPlayground screenshot](screenshot.png)

Android CardView Sample Sample

This sample demonstrates how to use CardView introduced in the support library in
Android 5.0.

Pre-requisites

	Android SDK 28

	Android Build Tools v28.0.3

	Android Support Repository

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/googlesamples/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

Android CardView Sample Sample (Kotlin)

This sample demonstrates how to use CardView introduced in the support library in
Android 5.0.

Pre-requisites

	Android SDK 27

	Android Support Repository

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/googlesamples/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

MotionLayout / Constraint Layout Samples

This repository contains a list of layouts that showcases the various features and usage of
[ConstraintLayout](https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html) and
[MotionLayout](https://developer.android.com/reference/android/support/constraint/motion/MotionLayout)

Pre-requisites

	Android Studio 3.3+

	Constraint Layout library 2.0.0-alpha5+

Getting Started

Import the project using Android Studio. Navigate to the app>res>layout> and open one of the layouts
in the layout editor. This sample is best understood by seeing the constraints in the Design mode
of the layout editor.

MotionLayout samples overview

Title | GIF | Layout | MotionScene |

:—-: | :—-: | :—-: | :—-: |

Basic Example (1/3) | | [Layout](motionlayout/src/main/res/layout/motion_01_basic.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_01.xml) |

Basic Example (2/3) | | [Layout](motionlayout/src/main/res/layout/motion_02_basic.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_02.xml) |

Basic Example (3/3) | | [Layout](motionlayout/src/main/res/layout/motion_02_basic_autocomplete_false.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_02_autocomplete_false.xml) |

Custom Attribute | | [Layout](motionlayout/src/main/res/layout/motion_03_custom_attribute.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_03.xml) |

ImageFilterView (1/2) | | [Layout](motionlayout/src/main/res/layout/motion_04_imagefilter.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_04.xml) |

ImageFilterView (2/2) | | [Layout](motionlayout/src/main/res/layout/motion_05_imagefilter.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_05.xml) |

Keyframe Position (1/3) | | [Layout](motionlayout/src/main/res/layout/motion_06_keyframe.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_06.xml) |

Keyframe Interpolation (2/3) | | [Layout](motionlayout/src/main/res/layout/motion_07_keyframe.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_07.xml) |

Keyframe Cycle (3/3) | | [Layout](motionlayout/src/main/res/layout/motion_08_cycle.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_08.xml) |

CoordinatorLayout Example (1/3) | | [Layout](motionlayout/src/main/res/layout/motion_09_coordinatorlayout.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_09.xml) |

CoordinatorLayout Example (2/3) | | [Layout](motionlayout/src/main/res/layout/motion_10_coordinatorlayout.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_10.xml) |

CoordinatorLayout Example (3/3) | | [Layout](motionlayout/src/main/res/layout/motion_11_coordinatorlayout.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_11_header.xml) |

DrawerLayout Example (1/2) | | [Layout](motionlayout/src/main/res/layout/motion_12_drawerlayout.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_12_content.xml) |

DrawerLayout Example (2/2) | | [Layout](motionlayout/src/main/res/layout/motion_13_drawerlayout.xml) | [Content](motionlayout/src/main/res/xml/scene_12_content.xml)
 [Menu](motionlayout/src/main/res/xml/scene_13_menu.xml)|

Side Panel Example | | [Layout](motionlayout/src/main/res/layout/motion_14_side_panel.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_14.xml) |

Parallax Example | | [Layout](motionlayout/src/main/res/layout/motion_15_parallax.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_15.xml) |

ViewPager Example | | [Layout](motionlayout/src/main/res/layout/motion_16_viewpager.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_15.xml) |

ViewPager Lottie Example | | [Layout](motionlayout/src/main/res/layout/motion_23_viewpager.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_23.xml) |

Complex Motion Example (1/4) | | [Layout](motionlayout/src/main/res/layout/motion_17_coordination.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_17.xml) |

Complex Motion Example (2/4) | | [Layout](motionlayout/src/main/res/layout/motion_18_coordination.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_18.xml) |

Complex Motion Example (3/4) | | [Layout](motionlayout/src/main/res/layout/motion_19_coordination.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_19.xml) |

Complex Motion Example (4/4) | N/A | [Layout](motionlayout/src/main/res/layout/motion_20_reveal.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_20.xml) |

Fragment Transition Example (1/2) | | [Layout](motionlayout/src/main/res/layout/main_activity.xml) | [MotionScene](motionlayout/src/main/res/xml/main_scene.xml) |

Fragment Transition Example (2/2) | | [Layout](motionlayout/src/main/res/layout/main_activity.xml) | [MotionScene](motionlayout/src/main/res/xml/main_scene.xml) |

YouTube like motion Example | | [Layout](motionlayout/src/main/res/layout/motion_24_youtube.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_24.xml) |

Example using KeyTrigger | | [Layout](motionlayout/src/main/res/layout/motion_25_keytrigger.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_25.xml) |

Example using Multi State | | [Layout](motionlayout/src/main/res/layout/motion_26_multistate.xml) | [MotionScene](motionlayout/src/main/res/xml/scene_26.xml) |

ConstraintLayout samples screenshots

![Constraint Set Example](screenshots/constraint_set_example.png “Constraint Set Example”)
![Advanced Chains Example](screenshots/advanced_chains.png “Advanced usage of Chains”)

Support

If you’ve found an error in this sample, please file an issue:
https://github.com/android/views-widgets/issues

To learn more about ConstraintLayout checkout the
[Constraint Layout Training Guide](https://developer.android.com/training/constraint-layout/index.html)

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see the [contributing guidelines](CONTRIBUTING.md) for more details.

 # Motion Layout Integrations samples

This sample showcases realistic animations built using MotionLayout in
real-world settings.

It is recomended that you use Android Studio 4.0 or higher to view this sample
to explore the animations in Motion Editor. For optimal experience, use Android
Studio 4.2 or higher.

ViewPagerIntegration
Integrate with ViewPager to create a dynamic header that animates as the user
swipes.

![Preview of View Pager integration](https://user-images.githubusercontent.com/119115/91504425-f3630700-e881-11ea-894e-f88704f8ce4d.gif)

This screen shows how to use a swipe event in another view to drive seekable
animations in MotionLayout. It has a relatively simple animation, containing
only two views, but by coordinating motion with user input it makes the screen
engaging without adding a lot of code.

File | Content |

—————————————————————————————————– | ————————————————————– |

[Activity](src/main/java/com/example/androidstudio/motionlayoutintegrations/ViewPagerIntegration.kt) | Activity showing how to coordinate MotionLayout with ViewPager |

[layout](src/main/res/layout/activity_view_pager_integration.xml) | Layout with ViewPager and a MotionLayout |

[scene](src/main/res/xml/activity_view_pager_integration_scene.xml) | Scene to describe the animation with two states |

Entrance

Build an entrance animation to play when the user enters a screen.

![Preview of Entrance animation](https://user-images.githubusercontent.com/119115/91504411-ea723580-e881-11ea-89f0-e46b6b04bc64.gif)

This example shows how to use motion:autoTransition=”animateToEnd” to
automatically progress animations through states. Visually it appears to be
a single animation, but in code it’s broken into four animations. For
animations that play for a long time like this one, this can help break the
animation into smaller pieces when developing. When viewed and edited in
Motion Editor this structure makes it easier to work on just one part of the
animation.

![Animation created from multiple constraint sets](https://user-images.githubusercontent.com/119115/91505778-48ece300-e885-11ea-8670-4068a0afc03a.png)
> Animation is created by chaining multiple ConstraintSets

File | Content |

—————————————————————————————– | ————————————————————– |

[Activity](src/main/java/com/example/androidstudio/motionlayoutintegrations/Entrance.kt) | Regular Activity (no extra code) |

[layout](src/main/res/layout/activity_entrance.xml) | Layout all Views used in this animation |

[scene](src/main/res/xml/activity_entrance_scene.xml) | Scene containing multiple ConstraintSet and Transition |

CollapsingToolbar
Build a collapsing toolbar with support for insets using MotionLayout.

![Preview of Collapsing Toolbar animation](https://user-images.githubusercontent.com/119115/91504419-f0681680-e881-11ea-9143-fa3810c01abd.gif)

This example shows a complex custom collapsing toolbar built using
MotionLayout. It shows how to use insets to set guidelines in a MotionLayout
to avoid drawing under cutouts and display an animated systembar underlay.

It also shows how to integrate MotionLayout with a custom view which draws the
circular coutouts and animates the background.

File | Content |

————————————————————————————————– | ———————————————————————————— |

[Activity](src/main/java/com/example/androidstudio/motionlayoutintegrations/CollapsingToolbar.kt) | Integrate MotionLayout, CoordanatorLayout, and Custom View, and Insets |

[layout](src/main/res/layout/activity_collapsing_toolbar.xml) | Layout all Views used in this animation, including inset guidelines & custom view |

[scene](src/main/res/xml/activity_collapsing_toolbar_scene.xml) | Scene showing how to integrate with custom views using CustomAttribute |

 ** This is a sample application that shows how data binding can be used with Lists **
It has a single list that can be updated by buttons at the top and bottom of the
screen. Instead of being a RecyclerView, the list is a LinearLayout containing
items. The BindingAdapter tracks the list and updates the Views inside
the ViewGroup.

This type of data binding is useful for ViewGroups containing a small number of
Views that should be shown on the screen at the same time. If you expect scrolling
of your list, you should use a RecyclerView instead.

The [ListBindingAdapters](https://github.com/google/android-ui-toolkit-demos/blob/master/DataBinding/DataBoundList/app/src/main/java/com/example/android/databoundlist/ListBindingAdapters.java)
class contains the BindingAdapter that ties lists to ViewGroups. You can use
this with any ViewGroup that needs only addView() and removeView() to manage child
Views, such as LinearLayout. The BindingAdapter works with both ObservableList
and List, depending on whether you need to track updates or not.

Note that this is not a library, rather a reference implementation. You can
(should) customize it for your app to get the best of it.

 ** This is a sample application that shows how data binding can be used with RecyclerView **
It has 2 RecyclerView lists. 1 of them has the same item type and the other one has mixed items.

All of the items from the first list are included in the second list so you can observe how
two lists stay in sync.

You should take a look at [BaseDataBoundAdapter](https://github.com/google/android-ui-toolkit-demos/blob/master/DataBinding/DataBoundRecyclerView/app/src/main/java/com/example/android/databoundrecyclerview/BaseDataBoundAdapter.java) class which adds a callback to the data binding class to prevent items from updating themselves. Instead, it notifies the RecyclerView about the change and waits for the RecyclerView to call onBind for that item.

This allows RecyclerView animations to work well and avoid unnecessary layout passes.

There are 2 adapters that are built on top of BaseDataBoundAdapter.

	[DataBoundAdapter](https://github.com/google/android-ui-toolkit-demos/blob/master/DataBinding/DataBoundRecyclerView/app/src/main/java/com/example/android/databoundrecyclerview/DataBoundAdapter.java) is suitable for lists where there is only 1 type of view. This way bindItem(DataBoundViewHolder<T> holder, int position, List<Object> payloads) implementation becomes type safe.

	[MultiTypeDataBoundAdapter](https://github.com/google/android-ui-toolkit-demos/blob/master/DataBinding/DataBoundRecyclerView/app/src/main/java/com/example/android/databoundrecyclerview/MultiTypeDataBoundAdapter.java) demonstrates using multiple item types. It works based on the asusmption that each item view receives a variable called data. This helps it to work with multiple activities.

You can see actual usage of these two adapters in the [MainActivity](https://github.com/google/android-ui-toolkit-demos/blob/master/DataBinding/DataBoundRecyclerView/app/src/main/java/com/example/android/databoundrecyclerview/MainActivity.java).

Note that this is not a library, rather a reference implementation. You can (should) customize it for your app to get the best of it.

Android MultiWindowPlayground Sample

This sample demonstrates the use of the multi-window API available
in Android N. It shows the use of new Intent flags and
AndroidManifest properties to define the multi-window behavior.
Switch the sample app into multi-window mode to see how it affects
the lifecycle and behavior of the app.

Introduction

Android N introduces new APIs to support multiple activities
to be displayed at the same time.

Activities that are started within the same task stack
inherit their multiwindow properties from the activity that fired
off the intent. The following features are available when an activity
has been launched into a new task stack.

An activity can be set as not resizable through the
android:resizableActivity property in the AndroidManifest. All
applications targeting Android N or above are resizable by default.

In split-screen mode, an activity can be started adjacent to the
launching activity by setting the
Intent.FLAG_ACTIVITY_LAUNCH_TO_ADJACENT flag in its intent.

Sometimes activities may choose to handle configuration changes
themselves (for example for games or OpenGL-based applications). In this
case, setting
android:configChanges=screenSize|smallestScreenSize|screenLayout|orientation
in the AndroidManifest definition of the activity enables callbacks for
all configuration changes that may occur during multi-window use for the
Activity. See [Handling Runtime Changes][1].

In freeform mode (where applications can be freely resized), activities
can be started within a certain area of the screen using the
ActivityOptions#setLaunchBounds call.

Alternatively, the preferred and minimum sizes can be set in a new
layout property in the AndroidManifest.

[1]: https://developer.android.com/guide/topics/resources/runtime-changes.html

Pre-requisites

	Android SDK 24

	Android Build Tools v28.0.3

	Android Support Repository

Screenshots

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/googlesamples/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

Android MultiWindowPlayground Sample (Kotlin)

This sample demonstrates the use of the multi-window API available
in Android N. It shows the use of new Intent flags and
AndroidManifest properties to define the multi-window behavior.
Switch the sample app into multi-window mode to see how it affects
the lifecycle and behavior of the app.

Introduction

Android N introduces new APIs to support multiple activities
to be displayed at the same time.

Activities that are started within the same task stack
inherit their multiwindow properties from the activity that fired
off the intent. The following features are available when an activity
has been launched into a new task stack.

An activity can be set as not resizable through the
android:resizableActivity property in the AndroidManifest. All
applications targeting Android N or above are resizable by default.

In split-screen mode, an activity can be started adjacent to the
launching activity by setting the
Intent.FLAG_ACTIVITY_LAUNCH_TO_ADJACENT flag in its intent.

Sometimes activities may choose to handle configuration changes
themselves (for example for games or OpenGL-based applications). In this
case, setting
android:configChanges=screenSize|smallestScreenSize|screenLayout|orientation
in the AndroidManifest definition of the activity enables callbacks for
all configuration changes that may occur during multi-window use for the
Activity. See [Handling Runtime Changes][1].

In freeform mode (where applications can be freely resized), activities
can be started within a certain area of the screen using the
ActivityOptions#setLaunchBounds call.

Alternatively, the preferred and minimum sizes can be set in a new
layout property in the AndroidManifest.

[1]: https://developer.android.com/guide/topics/resources/runtime-changes.html

Pre-requisites

	Android SDK 27

	Android Support Repository

Screenshots

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/googlesamples/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

Android RecyclerView Sample

Sample demonstrating the use of RecyclerView to layout elements with a
LinearLayoutManager and with a GridLayoutManager. It also demonstrates
how to handle touch events on elements.

Introduction

Sample demonstrating the use of [RecyclerView][1] to layout elements with a
[LinearLayoutManager][2] or with a [GridLayoutManager][3].

[RecyclerView][1] can display large datasets that can be scrolled
efficiently by recycling a limited number of views. Click listeners can be
defined when [ViewHolder][4] views are instantiated. [RecyclerView][1] is
available in the v7 Support Library, thus compatible with API level 7 and above.

Tap “Show Log” menu item to display log of elements as they are laid out and
tapped. Use radio buttons to toggle between [LinearLayoutManager][2] and
[GridLayoutManager][3].

[1]: https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html
[2]: https://developer.android.com/reference/android/support/v7/widget/LinearLayoutManager.html
[3]: https://developer.android.com/reference/android/support/v7/widget/GridLayoutManager.html
[4]: https://developer.android.com/reference/android/support/v7/widget/RecyclerView.ViewHolder.html

Pre-requisites

	Android SDK 28

	Android Build Tools v28.0.3

	Android Support Repository

Screenshots

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

Android RecyclerView Sample (Kotlin)

This application implements a RecyclerView in Kotlin with ListAdapter, onClickListener
and Headers. If you are looking for a simpler sample, look at the RecyclerViewSimple sample
in the directory.

Introduction

Sample demonstrating the use of [RecyclerView][1] to layout elements with a
[LinearLayoutManager][2].

[RecyclerView][1] can display large datasets that can be scrolled
efficiently by recycling a limited number of views. [ListAdapter][3] is used to
efficiently compute diffs when items are added/removed from the list. Click listeners can be
defined when [ViewHolder][4] views are instantiated.

[1]: https://developer.android.com/reference/kotlin/androidx/recyclerview/widget/RecyclerView
[2]: https://developer.android.com/reference/androidx/recyclerview/widget/LinearLayoutManager
[3]: https://developer.android.com/reference/androidx/recyclerview/widget/ListAdapter
[4]: https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.ViewHolder

Pre-requisites

	Android SDK 27

	Android Gradle Plugin 3.0

	Android Support Repository

Screenshots

![image](https://user-images.githubusercontent.com/46006059/98028846-8b6df700-1dc3-11eb-9f0b-ad93569be189.png)

Getting Started

To build this project, use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

 #Transitions

This application shows how to use the Transitions API in the Android Support
Library. While transitions have worked on the platform since the KitKat release
(API level 19), there was previously no way to use transitions on devices
running earlier releases. Now you can use the Support Library API instead to
run on Android releases back to Ice Cream Sandwich (API level 14).

Note that the Support Library APIs have the following limitations, compared
to transitions in the framework APIs:

	The Support Library API is specifically about view transitions, the same as

we offered in the KitKat release. Later capabilities such as Activity Transitions,
depend on platform capabilities that cannot be supported on earlier releases.
* KitKat transitions offer the ability to use XML resource files to define
transitions, scenes, and transition graphs. Support Library transitions, on
the other hand, only allow setting up transitions from code; there are no such
resource files available in the Support Library.

To use the transitions demo application:

	Click on one of the buttons to move the entire group of buttons to the

location specified in the button text. Note how the buttons animate into
place (via the single call to TransitionManager.beginDelayedTransition()).

	Check the “Stagger” checkbox to indicate whether the transitions should

run in a staggered fashion, one after the other. When this happens, the buttons
will start one at a time, by creating a custom TransitionSet of child
transitions with different target views and startDelays.

![Transitions screenshot](TransitionsOnJbEmulator.png)

For more information on transitions, see the following resources:

	[Support Library versions](https://developer.android.com/topic/libraries/support-library/revisions.html)

(use version 24.2.0+ for the transitions API)
* [android.support.transitions](https://developer.android.com/reference/android/support/transition/package-summary.html)
reference documentation
* [Developer training on Transitions](https://developer.android.com/training/transitions/index.html)

Android SwipeRefreshLayoutBasic Sample

A basic sample which shows how to use SwipeRefreshLayout to add the ‘swipe-to-refresh’
gesture to a View, enabling the ability to trigger a refresh from swiping down on the view.
In this sample the View which can be refreshed is a ListView.

Pre-requisites

	Android SDK 28

	Android Build Tools v28.0.3

	Android Support Repository

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/googlesamples/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

Android SwipeRefreshMultipleViews Sample

A sample which shows how to use SwipeRefreshLayout to add the ‘swipe-to-refresh’
gesture to a layout with multiple children, enabling the ability to trigger a
refresh from swiping down on the visible view. In this sample, SwipeRefreshLayout
contains a scrollable GridView, along with a TextView empty view.

Pre-requisites

	Android SDK 28

	Android Build Tools v28.0.3

	Android Support Repository

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: http://stackoverflow.com/questions/tagged/android

If you’ve found an error in this sample, please file an issue:
https://github.com/googlesamples/android/views-widgets

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see CONTRIBUTING.md for more details.

ViewPager2 samples

This sample shows how to use [ViewPager2](https://developer.android.com/reference/androidx/viewpager2/widget/ViewPager2)
with either Views or Fragments as pages, how to perform page transformations, how to link ViewPager2 to a TabLayout, and demonstrates
handling modifications of an underlying page adapter collection.

ViewPager2 is the replacement of [ViewPager](https://developer.android.com/reference/androidx/viewpager/widget/ViewPager),
addressing most of its predecessor’s pain-points, including right-to-left layout support, vertical orientation and
modifiable Fragment collections.

Samples

	ViewPager2 with Views - shows how to set up a ViewPager2 with Views as pages

	ViewPager2 with Fragments - shows how to set up a ViewPager2 with Fragments as pages

	ViewPager2 with a Mutable Collection (Views) - demonstrates usage of ViewPager2 with Views as pages and mutations in a page adapter

	ViewPager2 with a Mutable Collection (Fragments) - demonstrates usage of ViewPager2 with Fragments as pages, and mutations in a page adapter

	ViewPager2 with a TabLayout (Views) - shows how to set up a ViewPager2 with Views as pages, and link it to a TabLayout

Getting Started

Setting up ViewPager2

Just like ViewPager, ViewPager2 needs an adapter to populate it with pages. Any
[RecyclerView.Adapter](https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView.Adapter) will
suffice for simple use cases, when your pages do not have state that needs to be maintained across the Activity lifecycle.
The top level View that you will inflate for your pages must have its layout_width and layout_height set to
match_parent. If your pages do need to save state across lifecycles, make your adapter implement the
[StatefulAdapter](https://developer.android.com/reference/androidx/viewpager2/adapter/StatefulAdapter) interface, or
manage your own state saving (e.g., using [ViewModel](https://developer.android.com/topic/libraries/architecture/viewmodel)).

A simple stateless example can be found in
[CardViewActivity](app/src/main/java/androidx/viewpager2/integration/testapp/CardViewActivity.kt).

Using Fragments as pages

If you want to use Fragments instead of simple Views for your pages, have your adapter extend
[FragmentStateAdapter](https://developer.android.com/reference/androidx/viewpager2/adapter/FragmentStateAdapter). In
it, simply return a new Fragment in its
[getItem](https://developer.android.com/reference/androidx/viewpager2/adapter/FragmentStateAdapter.html#getItem(int))
method. The FragmentStateAdapter implements StatefulAdapter, so your fragments are automatically a part of the lifecycle.
Implement their
[onSaveInstanceState](https://developer.android.com/reference/androidx/fragment/app/Fragment#onSaveInstanceState(android.os.Bundle))
as you would do normally.

You can find an example of stateless Fragments in
[CardFragmentActivity](app/src/main/java/androidx/viewpager2/integration/testapp/CardFragmentActivity.kt),
and of stateful Fragments in
[MutableCollectionFragmentActivity](app/src/main/java/androidx/viewpager2/integration/testapp/MutableCollectionFragmentActivity.kt).

Working with TabLayout

With the original ViewPager, you were able to link it to a TabLayout by using TabLayout’s
[setupWithViewPager](https://developer.android.com/reference/android/support/design/widget/TabLayout.html#setupWithViewPager(android.support.v4.view.ViewPager)).
With ViewPager2, the integration comes in the form of
[TabLayoutMediator](https://developer.android.com/reference/com/google/android/material/tabs/TabLayoutMediator).
Simply create an instance of this class, pass an implementation of its OnConfigureTabCallback to the constructor, and
call attach() when you’ve set your ViewPager2’s adapter.

You can find an example of a ViewPager2 that’s linked to a TabLayout in
[CardViewTabLayoutActivity](app/src/main/java/androidx/viewpager2/integration/testapp/CardViewTabLayoutActivity.kt).

Testing

Performing UI tests on a ViewPager can be done by performing swipes on the
ViewPager element, or by calling setCurrentItem on the ViewPager directly.
Examples can be found in
[ViewPagerTest](app/src/androidTest/java/androidx/viewpager2/integration/testapp/test/ViewPagerBaseTest.kt),
[MutableCollectionTest](app/src/androidTest/java/androidx/viewpager2/integration/testapp/test/MutableCollectionBaseTest.kt) and
[TabLayoutTest](app/src/androidTest/java/androidx/viewpager2/integration/testapp/test/TabLayoutTest.kt).

If you need to wait until a swipe or page transition has finished, there are two
strategies you can employ: create an IdlingResource that is idle whenever the
ViewPager’s scroll state is idle, or create a CountDownLatch that counts down
when ViewPager2 transitions to idle. An example of an IdlingResource has been
implemented in
[ViewPagerIdleWatcher](app/src/androidTest/java/androidx/viewpager2/integration/testapp/test/util/ViewPagerIdleWatcher.kt).

Some useful Espresso extensions can be found in
[ViewInteractions](app/src/androidTest/java/androidx/viewpager2/integration/testapp/test/util/ViewInteractions.kt) and
[ViewPagerActions](app/src/androidTest/java/androidx/viewpager2/integration/testapp/test/util/ViewPagerActions.kt).

Support

You can report issues on ViewPager2 or the samples from this repository [here](https://issuetracker.google.com/issues?q=componentid:561920).

 # WebView Demo

This sample will demonstrate best practices around the useage of the [AndroidX WebKit API][1].

Pre-requisites

	Android SDK 29

Getting Started

This sample uses the Gradle build system. To build this project, use the
“gradlew build” command or use “Import Project” in Android Studio.

Support

	Stack Overflow: [http://stackoverflow.com/questions/tagged/android][3]

If you’ve found an error in this sample, please file an issue:
[https://github.com/android/views-widgets-samples][2]

Patches are encouraged, and may be submitted by forking this project and
submitting a pull request through GitHub. Please see [CONTRIBUTING.md][4] for more details.

[1]: https://developer.android.com/reference/androidx/webkit/package-summary
[2]: https://github.com/android/views-widgets-samples
[3]: http://stackoverflow.com/questions/tagged/android
[4]: https://github.com/android/views-widgets-samples/blob/main/CONTRIBUTING.md

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

